Problem 12-26

The acceleration of a particle along a straight line is defined by $a=(2 t-9) \mathrm{m} / \mathrm{s}^{2}$, where t is in seconds. At $t=0, s=1 \mathrm{~m}$ and $v=10 \mathrm{~m} / \mathrm{s}$. When $t=9 \mathrm{~s}$, determine (a) the particle's position, (b) the total distance traveled, and (c) the velocity.

Solution

The acceleration and velocity are related by

$$
a=\frac{d v}{d t}=2 t-9
$$

Integrate both sides with respect to t to get the velocity.

$$
\begin{aligned}
v(t) & =\int(2 t-9) d t \\
& =t^{2}-9 t+C_{1}
\end{aligned}
$$

Use the fact that $v=10$ when $t=0$ to determine C_{1}.

$$
10=0^{2}-9(0)+C_{1} \quad \rightarrow \quad C_{1}=10
$$

As a result, the velocity (in meters per second) is

$$
v(t)=t^{2}-9 t+10
$$

The velocity and position are related by

$$
v=\frac{d s}{d t}=t^{2}-9 t+10
$$

Integrate both sides with respect to t to get the position.

$$
\begin{aligned}
s(t) & =\int\left(t^{2}-9 t+10\right) d t \\
& =\frac{t^{3}}{3}-\frac{9}{2} t^{2}+10 t+C_{2}
\end{aligned}
$$

Use the fact that $s=1$ when $t=0$ to determine C_{2}.

$$
1=\frac{0^{3}}{3}-\frac{9}{2}(0)^{2}+10(0)+C_{2} \quad \rightarrow \quad C_{2}=1
$$

As a result, the position (in meters) is

$$
s(t)=\frac{t^{3}}{3}-\frac{9}{2} t^{2}+10 t+1
$$

Therefore, at $t=9 \mathrm{~s}$,

$$
\begin{aligned}
& s(9)=-30.5 \mathrm{~m} \\
& v(9)=10 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{aligned}
$$

To get the total distance travelled after 9 seconds, integrate the speed from $t=0$ to $t=9$.

$$
\begin{aligned}
s_{\text {total }} & =\int_{0}^{9}|v(t)| d t \\
& =\int_{0}^{9}\left|t^{2}-9 t+10\right| d t
\end{aligned}
$$

Below is a plot of the velocity versus time.

Find where the velocity is zero.

$$
\begin{gathered}
t^{2}-9 t+10=0 \\
t=\frac{9 \pm \sqrt{81-4(1)(10)}}{2} \\
t=\frac{9 \pm \sqrt{41}}{2}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
s_{\text {total }} & =\int_{0}^{\frac{9-\sqrt{41}}{2}}\left(t^{2}-9 t+10\right) d t+\int_{\frac{9-\sqrt{41}}{2}}^{\frac{9+\sqrt{41}}{2}}\left(-t^{2}+9 t-10\right) d t+\int_{\frac{9+\sqrt{41}}{2}}^{9}\left(t^{2}-9 t+10\right) d t \\
& =\left.\left(\frac{t^{3}}{3}-\frac{9}{2} t^{2}+10 t\right)\right|_{0} ^{\frac{9-\sqrt{41}}{2}}+\left.\left(-\frac{t^{3}}{3}+\frac{9}{2} t^{2}-10 t\right)\right|_{\frac{9-\sqrt{41}}{2}} ^{\frac{9+\sqrt{41}}{2}}+\left.\left(\frac{t^{3}}{3}-\frac{9}{2} t^{2}+10 t\right)\right|_{\frac{9+\sqrt{41}}{2}} ^{9} \\
& =\left(-\frac{63}{4}+\frac{41 \sqrt{41}}{12}\right)+\left(\frac{41 \sqrt{41}}{6}\right)+\left(-\frac{63}{4}+\frac{41 \sqrt{41}}{12}\right) \\
& =\frac{82 \sqrt{41}-189}{6} \approx 56.0 \mathrm{~m} .
\end{aligned}
$$

